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I. General Theorems of the Calculus of Operations.

IF the operation of differentiation with regard to the independent variable « be
denoted by the symbol D, and if ¢(D) represent any function of D composed of
integral powers positive or negative, or both positive and negative, it may easily be
shown, that

@(D){x]zw.u}=~.Lm.¢(D)u—|—m}z’x.¢’(D)u+%xL”x.go"(D)u+§13~.L”’w.<p"’(D)u+.. . (1)
and that

ez (D)u=(D) {prau} — (D) (P2} + (D) @'z} — 55" (D) "z} + . . (2.)

and these general theorems are expressions of the laws under which the operations
of differentiation, direct and inverse, combine with those operations which are de-
noted by factors, functions of the independent variable.

It will be perceived that the right-hand side of each of these equations is a linear
differential expression; and whenever an expression assumes or can be made to
assume either of these forms, its solution is determined ; for the equations

o(D){Jz.u}=P and ¢z} (D)u=P
are respectively equivalent to
w=(4a) " {p(D)}'P and w={(D)}((¢2)~'P).

The formula (1.) and (2.) indicate true propositions whenever they are interpret-
able ; that is, whenever ¢(D) and /(D) are capable of being expressed in integer
powers of D. In conformity with recognized principles of reasoning, when the
subjects of the process are regarded merely as symbols, we may assume that these
propositions are true generally ; and we shall therefore not hesitate to pronounce
any interpretable result derived from the free use of these theorems true, although
the intermediate steps of the process are not capable of a rational interpretation.

Bearing these remarks in mind, it will be seen, by an inspection of the above
equations, that if in (1.) D be written for , and — (or £) be written for D, we obtain

ptY(D Y= (D) (@t} — (D) {@tas} 3" (D) (@b} — . . .

D' denoting the operation - This equation is identical in form with (2.), and is
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32 MR. HARGREAVE ON THE SOLUTION OF

therefore true ; and the correctness of the result thus derived from this interchange of
symbols leads to the inference, that if in any linear differential equation capable of
being reduced to the form (1.) or (2.), and its symbolical solution,  be changed into D
and D into —x, we shall obtain another form accompanied by its symbolical solution.
Possibly the form so obtained and its solution may not be interpretable; but in every
case in which they are interpretable, they will be found to be true; and if, by any
transformation, meanings can be attached to those forms which appear to be unin-
telligible, they also will be found to be true.

It is an essential condition to be observed in all operations in which this process
is used, that the solutions are to be preserved in a symbolical form ; or, in other
words, that the operations are not to be performed or suppressed. It would mani-
festly be a source of error to write zero for (7).0, if in a subsequent stage x is to be
converted into D.

The process may be conveniently exemplified by applying it to the general equa-
tion of the first order,

ox.DutJrau=X;

of which the solution, (the processes being preserved,) is

u=e_/%d”{D“‘(s/;%M(¢x)“X)}, or u=¢~x*D~(ex*(px) "' X).

If we make the proposed conversions, we have for the solution of
—o(D){zu}+4D)u=X . . . . . . . . . (3)
u=—e"*P{x7'¢% (pD)"'X}.

But equation (3.), by (1.), is equivalent to

2¢(D)u+(¢'(D) —4(D))u=—X or X,.

Let ¢'(D)—4(D)=n(D), or (D)=¢'(D)—AD.
D D
Then (D) =f—;f(-‘])—)ld1)=log o(D)— fi%dn ;
and the solution assumes the form
/»A—@ 2Dip
”=(¢(D))”s ¢(p)dD{w_1e~f¢(D) Xo} e e e o (4)

the equation to be solved being
zp(D)u+r(D)u=X,.

This solution was first given by Mr. Boore in the Philosophical Magazine for
February 1847. It indicates in a striking manner the interchange of symbols which
is here proposed as a general theory; and leads naturally to the inquiry, whether
such a conversion may not be extended to other forms.

I am not prepared to assert that the considerations stated above actually establish
its validity as a theoretical process; but it possesses considerable practical utility,
when applied to a subject in which the value of the result, if true, is in a great
measure independent of the validity of the process.
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In this paper I propose to apply the formula (1.), by the aid of Mr. BooLe’s
solution above given, to the discovery of soluble forms of linear equations with
variable coefficients ; I shall also show that by the use of the conversion of symbols,
many forms of solution apparently incapable of interpretation may be made to give
useful results; and I shall point out a remarkable connection between the solutions
thus obtained and the solutions of the same equations in the form of definite integrals.

Amongst the cases of (4.) which are obviously and immediately interpretable, may
be mentioned

zp(D)u+m@ (D)u=X } (5.)
u={p(D)}*z{p(D)}~"X '
w¢(D)u+mﬁI])l)u=X 1 R (i )

u={p(D)}'D"{z'D"X}; J
but, as will be afterwards shown, most cases are interpretable when ¢(D) and A(D)
assume the ordinary form, and consist only of integral powers.

II. Application of these Theorems to the Solution of Equations.

I proceed then to apply equations (5.), in conjunction with the original theorem (1.),
to the solution in finite terms of forms of linear differential equations. Commencing
with equations of the second degree, we have, by (1.),

{D24 6D 42} (Y} =Y. D2+ (bya+24'2) Du+ (2 + bd w4 x)u
{2D 45} (Yrut= 24x.Du+-(bdx+2¢'z)u.
Consequently equations included under the form
2y D2+ ((br+2m)da+2xd'2) Du+ ((2x+bm)a+ (b +42m) Yo 42 v)u=X,

or. Diu +<b+2m 2‘”’%)1) +<2+ +<b+2’” dj;+¢w)u=(x¢x)—lx=P, . (7)

are readily soluble, the solution being
w= ()~ (D24-5D 4 )"~ (= (D24 bD+-¢2) "X}
= () (D2+40D + )™ {&~ (D24 bD - ¢?) ~"(x)x.P) }.
When X or P is zero, the solution may be reduced to the simpler form,
u=(¢x) " (D24 bD+ )" {&~ (D24 bD +-¢?) .0},
which will be found to be
w= ()" -m{m( L+ (=) g+ (= ) 570

(m—l)m2 o= m“’g*ﬁlgzg Ay .)+k’a‘*’<l—(m—l)*“‘“‘“fé)w

m—2 m(m — m 2

 and $3 being the roots of t2—|-bt+'c-2=0,
MDCCCXLVIIL F




34 MR. HARGREAVE ON THE SOLUTION OF

The solution here given is finite, in those cases only in which m is an integer posi-

tive or negative. When m is fractional, the undeveloped expression involves frac-
tional operations.

If however 6= —2c so that the roots are equal, the solution assumes the form

u=(¢x)—lecw(k‘r—2m+l+kl)
without any restriction upon the values of m.

The form (7.) deserves particular attention, as it will be found to include the most

remarkable of the equations of the second order, which have heretofore been inte-
grated by artificial methods.

Thus, if Jo=¢* we have the solution of
D2u+(b+2a+—2§)nu+(c2+ab+a2+(b+2a)§)u=f>,
of which the well-known equation
D2u+g;ﬁDuiczu=P. e (-8
is a particular case; the solution being
u=(D?+e?)"" {27 (D?1c?)~"(P)}.
If P=0, this is reduced, taking the negative sign only, to

u=(D2— 2" Y a~ (ke e )},
which will be found to be

uma k(1= =gt = 1) 2 ) )

+l (1 = Vgt =152 "0 )f

and the solution is expressible in finite terms when m is a positive or negative integer.
This equation is merely the simplest form of (7.), and is soluble by (5.) without the
aid of (1.); for in it 4 is taken to be unity.

Now let yx=a"; then the solution of

D2u+(b+g@£—_@>Du+<02+b(mw+n)+n(n—l)+2mn)u=P,

93'2
is u=g""(D24-bD4 )" {27 (D24 bD+c*)~"(2"+'P) }.
If in this 6=0 and n=-—2m+-1, we have another form of solution of the equation
D2u— 2" Upy 4 ctu=p;
namely, u=g"" (D24 )" {a (D?4-c%)~"(x~*"**P)}.

If n=—m, we have for the solution of
D2u+Dut (=" Yu=p
u=a"(D2+4b6D+ )" {@~' (D24 bD - c2)~™(x~"*'P} ;
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of which the well-known equation
(m j)—1-6'2)u--
is a case; the solution being
u=a™(D2+ 2" {a~(k sin cx+k cos cx)}
u=a"(D2— )™ o (ke* - Ke*)}.
The latter form is simply the series before found in the solution of (8.) without the

factor 2=™. In fact the solution of (8.) is the type of the solution of (7.), when there
is no second term P; for if u=u, is a solution of (8.), u=(4x) 'y, is the solution of

o2m Yo om Yz  V'z
D +<——+W)D +(c+$ o Ju=0.

The suppression of the terms containing 4 does not materially impair the generality
of the form ; for it is well known, and follows immediately from (1.), that

o(D-45 ) u=e"30(D) (57},

I have found the most convenient form of (7.) to be

2 9 0 ! m(m+1) =
Du+2QDu+(c+Q+Q Mt )Yy =P } ©)

w=am" U (D242 {2 (D24 c2) (2~ " VeUP)}

which are obtained by making Q:%;—: +g-, Q, being f Qdz.

Useful applications may be made by eliminating the second term from (9.) by a
change of the independent variable from « to ¢; ¢ and = being connected by the

. d
equation d-;:rml.
One of these applications leads to an investigation calculated to throw some light
upon the limited character of the solution of Riccarr’s equation. If in (9.) Q be

n
taken o we have as a soluble form,

D?u+g;Du+ <02+n(n—1) jm(m_”)u:P ;

e
and the elimination of the second term gives, (making %:m‘“ and x=—(2n—1 )t)
%—;-}-(2%——1)‘2 c22'22_711+ (r(r—1)—m(m—1))z* Ju=R or Pz_zz_il.
This forrh, therefore, and the cognate form
%+v2+(2n-— 1)-2 czz_iﬁ—l—l—(n(n— 1)—m(m— 1))z‘2> =0,

are soluble, without the restriction that » must be a whole number; but when this
F 2
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equation is made to assume Riccarr’s form by equating » to m, the restriction on
the values to be given to n takes effect.
If for » be written —n, we obtain the other form of the equation, viz.

g_:+v2+(2n+ 1)_2(02{2_?:‘-!- (r(n+1)—m(m—1))z7) =0,

which is subject to the same restriction, when assimilated to Riccarr’s form.
The solution of

+(2n—1> & =0
1

is (D24-c){a*(k sin cx+ % cos cx)}, x being 3721
and that of

4an
dzﬁ (2n+1) & »rig=0
is 2Y(D2+ )" {x ' (k sin cx+ K cos cx} ;

from which, general expressions for the solution of the two corresponding forms of
Riccarr’s equation may be deduced, subject to proper precautions with reference to
the arbitrary constants.

If we now, in a similar manner, apply the equations (6.) in conjunction with the
original theorein (1.), we shall find, making <p(D) D24-bD, that equations of the
form

[ ! 6 I
Dt (b2 45 Va b )Du +<’" +(b+ )W+‘fb;’) —p
are soluble ; the solution being
1
u=(ya)"(D?+D)~ D" {; D" (aya.P)} ;

which assumes, m being integer, the form of the finite series,

u=(2) " (D+B)" 2D (e P) =" ' D=2 (aa.P) 4 2= D=y oy, py

— 2.3y D)4 )

2%

)
And again, making 6=0 and Q=%+§x, we have for the integral of

m

m ﬂ_l)
D2u-|-2QDu+<Q2+Q'—' 2 )u:P,

u=w%e‘Q‘Dm“2{$D‘m(x_%“eQ‘P)}-

By processes in all respects similar, integrable forms of equations of the third and
higher orders may be obtained. For equations of the third order, it will be found
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that the expressions (5.) give, suppressing b,
3 6 ! " / ) m
L G o L e

u=(J2) (D34 cD+f)" {2 '(D3+cD+f) ™ (2d2.P)} ;

or

Dou+3QD%+ (c+3(Q@+Q) —3"" ) Dut (£ +0Q+Q+Q'+3QQ’

—ghint )Q+2(m—1):§(m+l))u=P,

u=a"e"U(D34-cD4f) " H{x (D34 cD+f) " (2~ ¥P)}.
And the expressions (6.) give

D3u+(b+ +3———>D2u+<c+ +2(b+m L 2‘{;’;)D
(e (42 e
u=(xlz.r)“(D2+6D+c)“D"‘“{5D"’”(mI«w.P)}.

It is obvious, however, that the generality of the soluble forms becomes less, as the
order of the equation rises.

The solutions derived from (5.) and (6.) as particular forms of (4.), have been given
in the first instance on account of their peculiar simplicity ; but more general forms
are derived by the use of (4.).

The expressions (4.) represent the solution of linear equations of any order, in the
factors of which no power of « higher than the first appears.

The general form is

(a,2+6,)D"u+(a,_.@+b, . )D"'u+...4(ay2+ b)) Du+ (agr+b)u=X, . . (10.)
in which

Yt="0,t"+b, ,t" ' +..+bt+b,
pt=at"ta, " '+...4at+a,

Yt b, A B  C b,
Ydt= ettt iyt oo )dt=t 4 log (t=apt—pre-c..),
where «, 3, v, &c. are the roots of pt=0; and A, B, C, &c. are found from the rational

t . . . .
fraction %—t Consequently the solution of this equation is

£ b,
w=(a,D" +0,.D" F .+ a; D a)) 6" (D—a)* (D — )" (e @ =0 0-p)...X}).
bn n
The factor ¢ =" denotes that z is to be changed into x——zﬁ; and the factor eibz:D de-

. . by, . .
notes that x is to be changed into #+-=; but these factors may be dispensed with by

making b,=0, which does not diminish the generality of the form.
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If, for example, we apply this theorem to the solution of
D2u+(ay2+ b)) Du+(agz+by)u=X

we have the rational fraction
byt +b, bia+b, b8+ 5,
B+at+ay a—gB "’ B—a
w=(D*4a,D+a5) "' (D— ) D—B)*(@~{(D—2) 4D —B)X}).
The performance of the operations requires that A, B, &c. shall be whole numbers ;
and these are the conditions under which the equations are soluble in finite terms.

If we combine with the above general form the formula (1.), we obtain the solution
of the equation

A= B="—

(a”‘l' + bﬂ) D”u + {a'n— 1-Z'+ bn- 1 +n(an“l‘ + b,;) x} Dn—

H{tu ot byt (1= 1) s+ b e b D

+{an—31‘+ b3+ (n - 2) (A bn—z)%g‘" (n—1 )——-(a,,_lx—l-b,,_,) 7_1'__.1 = 3 2((1 T+ bn) ID"”’

2
+...=X
in the form

u=(¢x)*‘(a,,D"+a,,_lD"“+..)“e%D(D—'-oo)“(D—B)B....< (et (D—a)-4(D—B)-... (w.X)}).

The important limitation, that A, B, &c. must be whole numbers in order that the
operations may be practicable, must not be overlooked; and with reference to this
point, the attention of the reader is called to the solutions by means of definite inte-
grals given in a subsequent part of this paper.

If two or more of the roots «, 3, &c. are equal, we obtain amongst the operations

C
expressions of the form ¢ m-=r", which do not appear to be interpretable in finite terms ;
but the corresponding solution in the form of a definite integral will apply.

II1. Solution of Equations by interchange of Symbols alone.

It bas been already observed, that the operation or set of operations denoted by
any function of D is not of itself intelligible, unless the function is capable of expan-
sion in integer powers of D, so that fractional operations may not be introduced ;
but if, by means of the transformation above indicated, the function of D becomes in
result changed into a function of &, such a result is intelligible, and may be relied
on as true, although the expressions introduced during the process may be purely
symbolical and incapable of interpretation.

Thus U= (D2 — CZ)m—l {J'_l(DZ—C?)"mX},
regarded as the solution of
2(D2— ) u+2mDu=X,
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is not interpretable in finite terms when m is fractional. Yet
u=(22—c2)" D {a2—?)""X},
regarded as the solution of
D{(22—)u} —2mau=X, or (22— c?)Du—2(m—1)zu=X,
(these forms being derived from the others by changing D into 2 and x into — D), is

interpretable for all values of m, and is correct.
Again, it has already appeared that the solution of

n{n—1) —m(m—1)
2

D2y +2£Du+(02+ )u:P,

is .u=‘z.m—n(D2+02)m-— l{x-—l(D2+02)-—m (.z.n—m+IP)} ;

which is not interpretable in finite terms when m is fractional.
But if this equation be multiplied by #2 and transformed as before, we get

(2242 D%u—2(n—2)xDu—+((n—1)(n—2) —m(m—1))u=D?P=R suppose ;
and we infer the solution to be
u=D""{(224-c2)" D {(224c?) D" "R} };

which is interpretable though m be fractional, provided m—n» be an integer ; or the
equation
(224 D?u~2axDu+b(2¢— b+ 1)u=R

is soluble when b is a whole number; the solution being
u=D—(b+l){ (m2+62)a—bD—-l{ (m2+c‘2)—~(a—b+l)DbR}} ;
of which a remarkable case is, (¢=0)

b(b—1) R

D2y — w2+cgu=w2+cg=X (suppose)

u=D"C{(224c?)~'D~'{(224c?)*'D*((x%4 ) X) } }.
In applying these forms great caution must be used with reference to the introduc-
tion of constants. The processes indicated in the value of # show b2 constants ;

which renders it necessary to determine & of them in terms of the other two by
reference to the original equation.

Thus, suppose we require the integrals of the equations

(14+22)D2u—2u=uz,

and (1422) D% —2u=a.
The form of both solutions is the same, viz.
u=kD"* :

@i
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whence we have
1 = 1
22y — o T tan=—l Al
D u_k(21+$9+2 tan .z-)—}—L

Du:ém tan"x+K o+

!.2
u::%@(l +x2%) tan"’w—%x)+%+k”w+ls’”.
Verifying the first equation by these values, we find

k—1

F=""""and ]fm__él.
- 2 -2

the solution, therefore, is

u:g((l +a?%) tan~'w+-x) —§+§(1 +a?).

e . ' k K — « .
Verifying the second equation, we find £"'=3 and k”’:—é—a » and the solution is

k ) o )
u=g((1+aY tan~"o+a) +5(1+a%) — 5

If the general form of the above differential equation be divided by a?+-c2, and the
second term be eliminated, by changing the independent variable from « to ¢, by

. dt .
means of the assumed equation = (2*-+¢?)", we obtain

dQ
Etg—l-b(% —b4-1)(a%+c2) @y =R (224 c2)~**"=R, suppose.
In order that the factor of w may be expressed in terms of the new variable, we must
dt .
solve ——=(224-c?)", and then find 2#24-¢? in terms of ¢.

For most values of a, the equation between x and ¢ is transcendental ; but parti-
cular soluble cases may be found.

“ . &2 .
Thus, if a=—1, then x=ctan c¢, .z'2+4:2=c—0;§—c;f » and the equation becomes

%—6(1)-[—1)60—:2—0—#:}{0;
whose solution, therefore, is
u=D~" (224 c2)~CV D~ { (2242’ D’ ((224+¢c?)"'Ro) } } 5
which becomes, when R,=0,
u=kD=C*" (224 ¢?)~¢*Y, » being ctan ct.

The original equation is not altered by writing —b for b-+1; so that a particular
solution may be readily deduced from the simple form

u=hkD"(2+c?)".

This equation will reappear under another form in the sequel.
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. 3 c? .
Again, if a=—35 then c®+a?=7—7;; and the equation becomes

T b2) =R,
whose solution, therefore, is
W=D { (a2-4¢2) 08D { (a4 D a2 ¢2) 7R, .
Thus the solution of

du_ 3
a? = 1=
2 /
(1—ey

The principle illustrated in this section may be further exemplified and usefully
applied, by attempting the solution of the general equation of the second order,

ox.D2u~4Je.Du+yr.u=P.
By the interchange of symbols, we have
o(D)(22u) — $(D) () +x(D)u=P;
or 2%0(D)u+22¢ (D)u+-¢"(D)u
—ad(D)u—4'(D)u =P.
+x(D)u
This equation is soluble if x(D)u={}/(D)—¢"(D)}u; for it then assumes the form
29(D)u+(20/(D) — (D)) u=2""P;
the solution of which, by (4.), is
u=o(D)e s { = (o(D)) s/ ¥ {1 } 5
and, by restoring the symbols, we get for the solution of
oo D*u+Lae.Du+(Jr—¢"v)u=P,
u=pas e D {(g) e/ w D (P ],
the correctness of which may be ascertained by verification.
If Yo=(n+41)¢'z, we have for the solution of
ox.D%u+(n+1)¢'v.Du+no'"v.u=P,

u=(g2)"f(oa)"/ Pdudz.

If 4« be made equal to Qex, and P to Rex, we get for the solution of
! n
D2u+QDu+(Q+a% —E Ju=R,
u=o¢x.e" "D {(ox)%YD(Rox)}.
MDCCCXLVIII. G
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And if gz be made equal to ¢/™ or ¢™, we have for the solution of
D%+ QDu+(Q+QT—-T?2—Tu=R,
u=¢"AD {4 D" (Re™)},

a form easily arrived at by ordinary processes.

IV. Adpplication to Partial Differential Equations.

Most of the soluble forms above deduced are readily convertible into analogous
forms of partial differential equations, by substituting for the constants any function
of D', where D' denotes differentiation with regard to a new independent variable.

Thus if in (9.) for Q we write f(z, D) and for ¢ we write A/ —1kD', we have the
symbolical solution of

d*u d\ d 1
wrof(e, ) - gt (=" Ju=p,
where P may be a function of x and y.
For example, if f (.r, gy) be of the form g% > the equation becomes

Pu | 2n dPu n? Pu ndu mm—1)
Tt (= 1) i =" =, )3
of which the solution is
u=wm2—nlogz.D'(D2_kQD"Z)m—!{x—l(DZ_k?D’Z)-m{x"(m—l)e”lol;”-w,\l/(x, y)}} .

Now  ¢"s*PY(x, y)=(z, y+nlog x), and e 5*> (2, y)=-(z, y—nlog z).
The question, therefore, is reduced to the solution of

a2
,1,; k dy 2—\1!('1" y):

or D2%u—a?u="Y¥(z, y), writing a for kD’;
1 1 —ax ~1.0%
whence u=5-s*D7'e ¥ (2, y) —5¢ “D 7" ¥ (2, y),

1 , 1 ,
= 2]cD’ehD./{F(x’ y——kx)da:-—- 2ICD'£—MI:/.W(‘T> y+lc.z')dx,

which is 21 (12, 9) +¥ale, ) HAy+ke) +uly—ka),

where A and p are arbitrary, and ¥, and ¥, are derived from ¥ as follows; for y in ¥
write y — kz, integrate to x; change y into y4-Ax, and integrate to y ; this gives ¥,
from which 'Y, is formed by changing the sign of .

If f (x, :Z—/) be of the form m.d—t;-i—,uw, the equation becomes

Tt e (2) = ) Gk 2 ok (Lo r ) oo ()l =" ),
='~}J(&’, y) H
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and the solution is
w= et (D2 D)1 (27 (D2 — D)™ Veed (a, y+1z) )},

where e~ (z, y) means J(z, y—A ).

Transforming this equation to new independent valuables p and ¢, by the equations

p=y—na+kz, —g=y—rr—ka,
+

or p=22, y=n, (p ) 21

we have, as a soluble form,

it (o) () + Ge(e+2rk (G4 )~ T Ju=2(r. 0),

- the function A disappearing in the process.

If wz be of the form %, we obtain a well-known equation, solved by EuLgr in a

series when there is no second term,

dﬁu o du du a—1)—m(m—1)
dpdyq p+q dp )+ p+q)9 u=9(p, 9),

which is therefore soluble; the solution being
‘z,m—-a(DZ_Dm)m-l {x—l(Dz_Dlz)—m{wa—m+l¢l(x, y)} }’

where ¢, is determined from ¢ by the equations
p=a-+y and g=x—y.
If a=0, we have the solution of
A m(m—1)
dpdg (p_{_qszu—'ﬁo(p: 9
and if a=m, we have the solution of
d*u m
apdg Tt g dp+dq =e(r, 0);
from which the solution of ‘
P o - tm %
-d}—é:-_-c 'S ﬂm—-l W
may be obtained by making
=0
s=(p+g)~™"

2m-—

Returning to the general form and makmg rz=0, we have for the solution of
d® 42 d —
T Wgstoe gt (=" Yu=4 (2, 9)
U= mme-p,.v(Dz__ k2D!2)m-l { .Z"’(Dz-— k2DI2)-m { .z‘“(m*’)e”“"nf/( 2, y) } }.
G2
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. . d
Again, equating the factors of EZ“Z and u to zero, we have px’:—g— and Av=a""";

therefore

d%u —om A% —im d®u  2m du
T2 =) et = )

is soluble ; and if the variables be changed by the equations

pmke gy

1
9=kx—2—ﬁ:l-a?“(2’”””——y,

the form
Pu |k pAg\sdu | duy
dpdg T2™ 2k i) =P 9

becomes soluble.

By a process of a similar nature applied to (10.), it will be found that the formn

dr d» dr d’ \
(a,x +5n)¢—§,+ (@, x4 bn—l)a;{—ifﬁé"l' et (a4 bl)m%zi +(ayx +bo)g;lf,=f (z, )

has for its solution

l"ll
u= (@, 44, D" D'+ .+ DD D7) 6" (D= D)\ D — D).

b,

7 {{ew” (D—aD) 2D —LD") 2. flz, )} ).

V. Connection with Definite Integrals.

It is well known that many of the differential equations integrated by the above
processes, and whose integrals are in some cases capable of an expression merely
symbolical by reason of the number of operations to be performed being fractional,
may be integrated generally, when there is no second term, by means of definite

integrals.

Now with reference to most of the equations of this description here integrated,
I have observed that the symbolical form above given is capable of being instantly

(and, as it were, mechanically) converted into a definite integral of the form

b
U= f ¢z.67dz,
a

the function ¢z being typified in the symbolical solution by the form of the opera-

tions preceding the factor 7.
To explain this, let us take the equation

D2 2’"]) 2, —
u—l——; u—cu=0;

its symbolical solution is
u=k(D?— )" {a (D>~ c?) "0} ;
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and the assertion is that a solution of the equation in the form of a definite integral
is obtained by writing for ¢z, k(22—c?)""! and selecting the limits properly ; in fact,
it is known that

c
u:{»f (22— 'edx
—-C
is a partial solution; and as it is'a known theorem, that if u=:u, solve
1
Dgu—l-%Du—cZu:O,
it is also solved by u=ua"u, if for n be written —n, we have for the complete solution
u:]f/—.c(ZQ_ cZ)m—-lezde +k7x—2m+‘/:6(z2_ 02) —mezxdz
1 1
=t/ (1) emde g Ko (22— 1) mewds,

. -1 . . . d? .
If for x be written ((1—2m)t) -1 we obtain the solution of Eg—azt"u:(), m and
¢ being properly taken in terms of @ and n.

In like manner, if we apply this mode of conversion to the more general form
D2u4-2QDu 4 <Q2+Q’—cz—7£(—7%—l—)>u=0,

of which the solution expressed symbolically is
u=a"s"W(D?—c2)" o (D?—¢?)7'0},

the definite integral ought to be

1 1
u:kx”‘e_Q“/_.l(z?—l)m_lem’dz—I—-]f'a“_”‘“e_afl(zz—1)""5"”‘”dz,

and this is in fact the solution.

The limits must be determined by verifying the equation and assigning them
accordingly ; the verification at the same time establishing in the particular cases
the correctness of the results arrived at by the substitution. Thus, if we take the
general form

29(D)u+(D)u=0,

and its symbolical solution
u={p(D)} " {FPa~'e¥™0},

Yt
where = —adt,

the conversion here indicated gives

u=Fkf(pz) "' dx.
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To verify this, we have
o(D)u=fe*edx

\II(D)U— __exz zzdz_ﬁzxd(exz) ezxexz_m‘/“exz "”dz

and the equation is verified, if #*** vanishes between the limits. Whether the limits
can be so taken depends upon the form of xz.

. Apply this to zD"u-+u=0.
Here pz=g" Jz=1,
z—ntl
and X*=_3F1
z—ntl
and u=kfz""—n1edy,
2—n+1

The limits 0 and —oc cause ¢*¢—=+7 to vanish and satisfy the equation. So that

oz
u=k /: R e etdy

is a partial solution; which may be completed by writing for z, #z, 3z, &c. where
1, o, 3, &c. are the roots £"=1.

Again, if we apply the above solution to

D"u—au=0,
zn+l
o — Tt —
we have px=—1, fz=3g", XE=—7
and u_.l‘f/.e n+xe”“dz

nt+l
Here, there donot appear to be any limits which will make ¢~ »+7¢** vanish ; but if we
take for the limits 0 and oc we have D"u—au=4k. This last equation is also solved

x gzt
by u=7mf e “*dz, « being a root of "*'=1.
Therefore the original equation is solved by
X zn+l
u=k f o & (8 —ae™)dx,

which may be completed by the use of the other roots*.
Let us apply this method to the solution of

(a,24b,)D™u A+ (oz,,_,x+b ~)D" w4 (@24 b,) Du4-(agr + by) u=0,
and we have at once

u=kf(a,2"+a, .z +. —l—alz+ao)"l(z—-oo)“(z—ﬁl)B s e"*dz

e e JETI ) zﬂ+bn_,zn—*+ b, A
A+ Ay 12 .. = an(z— (z--ﬁ) +2—a+z—-ﬁ+""

where

* See Moiawo’s Calcul. vol. ii, p. 644.
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To verify this and find the limits, we have

x(a,D"u+ta _1D"‘“u+..+a1Du+aou)=k;§/E —a)(z—B)"...c0 e“dz—lfﬁz—a)A(z —B3)".. i
=lfe”‘”(z-—a)‘*(z——{3)3...e%?‘f—-k (z—u)A(z—-ﬁ)B..(@-l-z-é;-l—;_—ﬁﬁ-..)eﬁze“”dz

R () (2 = )i’ — b (B by ) (@ 7)) B e
=—(b,D"u+b, D" wt.+b \Du+-b,),

if lce’“(z——a)“(z-—@)“...si;” can be made to vanish between the limits; and this condi-
tion is satisfied if —oc be taken as the Jower limit, and «, 3, &c. be taken successively
as the upper limit, whence the complete solution.

- If the expression a,x"+.. has m roots equal to e, the form of the solution will be
modified. If in such case the rational fraction

bp2™ + ...
4 + . +(z a)m+(2. a)m—l+ +z-—a+mﬁ+

the solution becomes

u=k/[(a,x"+.)"" (=a) # (e=a) (2—a)h(z—0)".. 5u “erdz

between the limits —oc and «, 3, &c. This solution is incomplete ; but it way be
completed by using instead of @,2"+-...its first, second, . ... (m—1)th differential co-
efficients.

There can be no doubt that this remarkable connection between the symbolical
solution and the solution by definite integrals is not merely accidental, but is founded
upon a similarity in the processes by which they would be respectively arrived at in
a general system of solution.

The following considerations are offered as in some measure explanatory of the
connection above adverted to. The equation to be solved is of the form

20(D)u+J(D)u=0.
b
Now if u:lJ w2.6“dx, we have
@(D)u:/ff bwz.@z.e”dz =£e""wz.§oz—;—; /' (c:; #2) £ dz
between the limits. And ‘
b
xL(D)'u:lf/. w27 dR.

If the limits be—oc and a root of pz=0, the equation is verified if wzfz= %(wz‘.@z),

which requires

log (wz)= f \Iqu; Sb'zdz,
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or wx=(px)7" dz

being the same process as that by which, in the symbolical solution, the form of the
function of D preceding the factor 27 is obtained.

'VI. Linear Equations in Finite Differences.
If in (3.) we change the form of the functions by writing ¢” for D, we have
29(P)u b (Pu=X,

or rp(B)u +4(E)u,=Q, . . . . . . . . (1)
where E is equivalent to 14 A, or denotes the operation which is performed in chan-
ging u, into u,,,.

It follows that the symbolical solution of (11.) is
u,= (9E) a1 mQ,

_[E) Yo

—duv if ¢f=v.
(20

where

A case obviously interpretable is that in which Jo=mev¢'v; and in that case the
solution of

2p(E)u,+mE¢' (E)u,=Q,
is u,={p(E)}" 27 {o(K)}Q,.
If we take the equation

(a,246,)u, t - (g z'+bl)u,+1+ (aox—!—b Yu,=Q

b+ .. 4 b+ b,
we have %U_/v(anv"+...+alv+a0 f v—oc ﬁ+ )dv
where «, 8, &c. are the roots of a,,v"+..—|—alv—|—a0=0.
and

um:(anE"—i—..-l—alE—l—ao)—lE;%(E-—oc)A‘(E—-@)A2....{.Z‘“l(E—Z—E(E———w)‘A‘(E—ﬁ)_Az....Qx)}.
In like manner, if
(@245 )2 U+ .4 (@ 4-by) Au, 4 (agx 4 b))u,=Q,,
we have
= (0, A" o 1,5 00) (14 AV (A=) Ao (™ (1 A) (A M (A—B)4..Q),
where

b " +..+bw+b,
(L +v)(av"+ .. +alv+a0) 1 +v+v-u+v—ﬁ+

Thus the solution of

o(E?—c)u,—2mEu,=Q,,

2m Q
—_—— — 29—
or Uy 7 Uy — 2, == 7 5

is w=(Et0) " (E—0) " o (B0 (B — 07Q)} ;
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and that of
2(A2— cH)u,—2mAu,=Q,,

2m Q
. 2, s Dy e T
ol Au, . Au,—cPu = =

s u,=(AM— ) Era(A—o) (A4S o (E TR A — 0 1At o) "Q, ).
The results thus obtained are not interpretable unless B, -Z—", Ay, Ay, &e. are integer;
Q

in the event of any of them being fractional, however, the solution of the equation,
(the second side being suppressed,) may be found as before in the form of a definite

integral, by introducing the factor £ and changing D into z, and writing for % the

integration with regard to z between the proper limits.
Thus it will be found that the solution of

(@, 2406 )ty + .. (@@ b)), -+ (agr 4 by)r,=0
byz
is uwz-:/(.ans"z @ Fay) e w (F—a) (e —B)V.. dy

between proper limits.
For taking this value of »,, we have

boz
‘z'(anu.r+,n+"+aluz+l+a()ux) =:Zf270-(8z— “)Al(ez _Q)A,..‘ez-l'dz
by byz
=/;70(ez—w)A'(ez—B)Aﬂ... A" = (& — o) M(£—B)M...
e s by, of A A
—-‘/s. (eao (—o)™(e —ﬁ)“?...)(;i—ke (E—z—_:l-u-l-sz__gﬁ-l-..))dz.

Of these two terms, the first vanishes if one limit be 3=—aox, and the other have
the successive values log «, log 3, &c., and the second term is equal to

bo2 b &+ +bf+ b, .
zT ) z A (2 A, n 1 0 ar
—ﬁ (e ((e —a)h(E—p)"... anenz_*_"_l_a]ez_'_aodz-—-—(b,.u,+n+--+blua+1+bo”,),

so that the equation is verified.
The complete solation therefore is

log & 123
uz=01[a (ane"z—{—..+alez+ao)“‘eatz(ez-—oo)A'(e’-—(B)““...e"dz

log B . b
+62./:o< (@, 4. A ayf +ag) e (¢ — o) (€ —B)™..edx
+4&e.

or more simply,

a b
uz=clﬂ (@ "+ .. Fapv+ay) vu(v—a)(v—pB) ... v dy

s L
+ CZ/D' (av"+..4aw+ay) vo(v—a) (v—B)N...v" " dy
+&e. &e.
MDCCCXLVIIL. H
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In a manner in all respects analogous, it may be shown that the integral of

(a,x+b,) A"y, .4 (@, 2+ b)) Au,+ (a4 by)u,=0,

s ty = f 0 0+ 00) R = M=) ()
p b
+CZ./:1 (a,0" . Faw—+ay) " vo(v — ) (v—B)"..(14v)dv
+&e. &c.

If the expressions v(«v"+..+av+a,), (14v)(av"+..4a,v+ay) should have two
B
or more equal roots, we shall obtain factors of the form ¢»-%", as in the case of linear

differential equations of analogous forms.

The process of changing the symbols may be used to obtain solutions of differential
equations from known solutions of equations in finite differences.

The solution of the general equation of the first order

(A+Au,—Pu=Q,

is PP P 3 ()

A similarity existing between this form and the solution of linear differential equa-
tions of the first order will be seen, by writing the above equations in the following
form,—

Lu—orau=X,

u:gzlong(e—ﬁlog¢(-v+1)X) ;
and the conversion of symbols would give
“u—o(D)u=X

~w_11°gm){ 1 “;——@ log @(D+1) X} .
g . ’

—1 €
a symbolical solution apparently incapable of rational interpretation, at least in finite
terms.

If bowever we suppress X, and by a conversion similar to the one before proposed,
oD be changed into ¢(—=z) ; and & be changed into —I, D' denoting differentiation

with regard to z and a factor ¢ be introduced, we shall find that the substitution

1 . 1 1 .
for w—7 is 5—7 or & : and the general result is

u=¢"

U= Eszlog ¢(—z)2—zz’

where 2 denotes summation with reference to 2, and the first summation must be
taken between proper limits.
The form of this is
u=2(..0(n)..0(—2—2).0(—z—1).e7)
between proper limits; which, changing the sign of %, may be more conveniently
written
u=2(....p(2—2).0(z—1).6").
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To verify this, we have
e u=2(....0(3 —2).0(x—1).£*V)=P,_, suppose,
o(D)u=3(...p(x—2).0(z— 1).03.6)=P,;
consequently
eu—p(D)u=3(P,_,—P,)=—=3AP'=yr—P,_ ,=xr—(..0(3—2).0(z — 1).£#7),
the last term being taken between proper limits.
Let «, 3, &c. be the roots of pz=0; then if at one limit x have the values 1+4-,

148, &c. successively, P,_, will vanish; and 3= —oc will give a vanishing value at
the other limit. The form of the function yx must be ascertained by verification.
Let pr=g"4ax'"' .= — o) (z—0) (z—7)....

P(n)...0(2—2).0(3—1)={(n—a)...(x—1—a) }{(n—P)..(s—1 =) } ...
_L—a) T(z—pg)
T TI'(n—a) I'n—p)

1+a

u=3"*(p(n)...0(z—2).p(x—1).&*) = (n_a)}(n_ 2 L (=)D (3 —B)..s™)

1 x o 2 [e'3 _ . o4
=F(n—u)1‘(n—ﬁ)...2ﬁ dvye™"vy , Qs /; dvs...e™.

RZny Rgy 2
£ 0,7,

NOW Evlz-—u—lvzz—-ﬂ—l “.sz=vl—n—lvz—/}—lEez(w+log(vlv2...))=v1—z—lv2—3—l". P — 1’
’ 17

which taken between the limits —oc and 14« is

%+1 a—p, C—
@t Nay B—fy 2=V,

109000 — 1 ’
and, if this be integrated successively with respect to v, v,... and taken between the
proper limits, we get
—[—a—1]ln—B—1]..u=""{[a—B]l[e—y].+ [e— B+ 1] [a—y+1]..&"
+ 2] [e—B+2][e—y+2]...8%+...}.
If n=a-1, we have
w=— 514 (o B 1) (e — g +1) .6+ 1.2(a— B 1) (e— B+2) (e—y+1)
(e—y+2)...e4...}.
To verify this, we have
e u=—e"{14+(e—B+1)(e—y+1)..e4 ..}
pDyu=—  {(a—B+1)(a—y+1).s"+..}
e u—p(D)u=—e".
If all the roots of pz are zero, we have for a partial solution of

e 'u—Dru=c,

» (o [ x 1
u=cef dv]f dvz..../. dy, ettt
0 0 0 n 1 =005 00 V"

=ce" (14" (1.2)"*4- (1.2.3)"¢" +....).
H 2
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VII. Miscellaneous Forms.

In the course of the preceding investigations, I was led to attempt the solution of
some forms of equations by means of successive operations not consisting exclusively
of D combined with constants, but involving also functions of . The only important
result which I obtained is the following, being a slight generalization of the method
originally employed by me in effecting the solution of the equation of LApLACE’s
coefficients.

The equation

=X

D2u+bDu+cPu—n(n+1)

cos2
is solved as follows.
Let « and 3 be the roots of 224-bz+¢2=0, and assume

Du—au=u,.

Then Du,—Bu, — n(n—{—l)coSQ X,
um o s (D — P —X),
Du— =22 °ZS+”1” (D2, -+bDu; +cuy) — 2"°Zﬁj‘;"”(1)ul —Buy)— (D— )(°:S+"”l)x>=u,,

+1)
cos2

or D%u, +bDu, + c*u, — 2 tan x.(Du, — Bu;) — U, =X'—eX—2tanz. X =X suppose.

Assume Duy—ou, — 2 tan w.u, = u,,
then by a similar process we obtain

n(n+1)—

D2u,+ bDuy+ cPuy— dtanz.(Duy— Buy) — =5~

2=X’,-—mX,-4tanw.X,=X“suppose.

Similarly, if we assume
Du,—au,—4 tan z.u,=u,,

we obtain
9 2 n(n+ 1)—6 .
D2us+bDug+ c*uz — 6 tan x.(Dug — fuz) ———_ 57— uy=X', —aX ,—6tan2.X =X,
suppose.

Proceed in like manner until we arrive at the assumption

Du, — eu,—2n tan r.u, =u,.,,.

Then D?u,,,+bDu,,,+cu,,,—2(n+1) tan z.(Du, ,, — Ptty,) =X en-
Let Du,,,,—B%,.,=Q,

then DQ—eQ—2(n+41) tan 2.Q=X,,

and Q=¢(cos 2)***1fe~*(cos #)*"* VX, dr,

u,,+.‘=e"’”fe<““”f/'(cos 1‘) -2(n+1y'e—¢z(cos .z’)“"“)X(,,H)dxdv,

u,=¢*(cos ») "*"fe**(cos x)*"u,,,dz ;
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and so on down to u, which will be found to be,
gzz(ﬁflﬂ)_n{ﬁww)x(cos ) ?fEP(cos &)X Vfe=* (cos )X, drdzdr} ;
and if X=0, this becomes
u=ks“’< (tana) ) { Je®=*(cos x)™fc*P*(cos x)~*"* Vdrdr},

proper precautions being taken with regard to the introduction of constants.
Perhaps the difficulties relating to the constants may be evaded by writing the
solution in the form

—(n+1)
w=ke*( 57— )> {¢B=*(cos &)+ fe*=P(cos )~ Vdr},
and then substituting — (n--1) for », which does not alter the original equation, we have

u=rhe* <d—(t:%5§) {e®B=92(cos ) ~2fe*~P*(cos z)"dr} .
If « and 3 are both zero, we have for the solution of

D2y=—n(n+1)—7—

cos2 0,

u=k<g(—h:—ln-y;v—))n{ (cos v)~*f(cos v)*dx}

=k(5) |+ g R () (4
where y= tan z.

Let e=c and 3=—c, so that the original equation becomes

d?
dg—-czu n(n+l)cosx =0,

then the solution is

u=ke*

i tan'z-)> {/’a—zcz(cos ‘Z,)Zn Ezc.r(cos a‘)‘“"“ﬂwdx}

=he <d (tan w)) Se(cos &) 7+ (cos @) "dvd},

which contains the proper number of constants; as the constant which enters by
reason of the first integration disappears by the subsequent differentiations.

. . . , . . . d
This solution will apply to LarLacg’s equation, if for ¢ be written %

This gives for the solution of

d%u dQu
ar—C (Jh*"—n(n“'—l)cos2

="y (Wﬁ’o {e‘md'y(cos x)~*f(cos #)"p(y+2cx)dz}

+e°’ﬁﬂl§<m—a—%;)) {(cos z)~*(y—2cx)},
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d
the symbol ¢7**% denoting that, after the operations are performed, y—2c2 must be

written in lieu of ¥ ; and the symbol e””% denoting that, after the further operations
are performed, y+cx must be written in lieu of y.
The solution is simplified by considering the latter function alone as a partial solution,
and completing the solution by changing the sign of ¢ with a new arbitrary function.
Now if in LapLACE’s equation

d
EE((I I“Z)d{,’)'l‘l 1”2 &P +n(n+1)u""

we make r=tan"'(un/ —1),
. A% d%u
we obtain o n(n—}-l)COSQ =0.

The solution of LapracE’s equation, therefore, by this process assumes the form
—d s d n " _ —
w1 () (1—2)"p(y—2 tan(un/ = 1))

gt ‘_"'%f(&%) {(1—=p)"%(y+2 tan™*(uy/ = 1))}

Postscripr.—Received March 16, 1848.

The following brief investigation is more general in its results than that developed
in pages 50 and 51.
By applying the fundamental theorem to the linear equation

. ) Upyn— QLU =2,
and its solution

u,=¢(x—n).p(r—2n)..2{(p2.0(x—n).¢(x— 2n)...) "z},

(where the sign of summation has reference to x, Az being n,) we obtain the equation

e u—o(D)u=dz, . . . . . . . . . (12)
and its symbolical solution

u=¢(D—n).p(D—2n)...{;==7(@(D).¢(D—n).¢(D~2n)..) ")} ;

. 1 . . a2 e
and by expanding the factor —w 1> and reducing, we obtain for the solution of (12.)

the series (2 referring to p),
u=3c7(p(D) p(D—n)....0(D—pm)) s,
=2(p(D4pn)-o(D+(p—1)n)...o (D)) {e ™}
If €=y, and xy consist of powers of y, the above formula gives the solution in
series of powers of ¥ of the equation
¢<!/%)-“+qyn=%y-

Several equations of this form solved by Mr. BooLE’s general method, are given in
the Philosophical Transactions for 1844, pp. 236-240.



